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Decentralized exchanges (DEXs) are foundational to decentralized finance
(DeFi), enabling on-chain trading directly between users without relying on
traditional intermediaries. Within the DEX landscape, two primary models
dominate: Automated Market Makers (AMMs) and Central Limit Order Books
(CLOBs). Automated market makers occupy a central place in decentralised
finance as the primary means for on-chain trading. An AMM is a two-sided
platform where traders (aka takers) consume the liquidity provided by liquidity
providers (LPs) and which operates entirely on-chain.

Liquidity fragmentation remains a major obstacle to efficient cryptocurrency
trading. Assets are spread across centralized exchanges (CEXs), decentralized
exchanges, and separate blockchain networks. Although many of the existing
efforts attempt to improve local efficiency, they do not offer a complete solution
to the liquidity fragmentation problem.

1 Introduction

The rise of cryptocurrency trading has transformed global finance by allowing
digital assets to move across borders without relying on centralized authorities.
However, one of the biggest hurdles the industry faces is the fragmentation of liq-
uidity. In contrast to traditional financial systems where most trading activity is
concentrated on a few major platforms, the crypto landscape is highly dispersed.
Trading occurs across centralized exchanges, decentralized exchanges, and sep-
arate blockchain networks, each with its own isolated pool of liquidity. This
decentralized structure makes it challenging for traders to access optimal pric-
ing and sufficient market depth, especially for large transactions. Additionally,
the growth of decentralized finance has added layers of complexity, introduc-
ing mechanisms like automated market makers that operate independently and
often lack synchronization with broader markets.

Institutional investors are particularly affected by fragmented liquidity. For
example, when a hedge fund attempts to purchase a significant amount of
Ethereum, a single exchange might not have enough supply to fill the entire
order without causing a major price spike. To manage this, the fund would
likely need to divide the trade across several platforms, which leads to higher
costs and increased exposure to market fluctuations. During volatile times, frag-
mented liquidity can make price swings even more extreme, increasing risks for
everyone in the market.
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In general, liquidity fragmentation poses a major challenge to the efficiency
of cryptocurrency markets. It drives up trading expenses, complicates large-
scale transactions, and intensifies volatility-related risks. Addressing this issue
is essential for creating a more resilient and reliable crypto trading environment.

Related work

Improving execution performance is, of course, a concern in traditional finance.
Guilbaud and Pham [1] emphasize the necessity of order splitting to mitigate
the impact of large orders. Later this work was extended to multi-venue rout-
ing, focusing on optimising execution cost across varied liquidity profiles. The
structure of AMMs inherently adjusts asset prices based on trade sizes. In that
respect it is analogous to some traditional models of price impact, such as those
incorporating marginal supply-demand curves. Because of this response of price
to order size, optimised executions need to split orders across multiple AMMs.

Trade routing plays a crucial role in decentralized exchanges (DEXs). Var-
ious DEX platforms employ different algorithms to identify the best trading
routes for users. For instance, platforms like Uniswap, PancakeSwap, and
SushiSwap utilize algorithms based on depth-first search. Meanwhile, the DEX
aggregator 1inch initially implemented a similar approach but later transitioned
to a more advanced algorithm, the specifics of which remain undisclosed. Al-
though DFS-based methods are computationally efficient, they don’t always
guarantee the most profitable trading routes for users. Recently, Zhang, Li,
and Tessone [2] improved upon the depth-first search (DFS) graph heuristics
most commonly used by modern DEX aggregators by introducing a novel ”line-
graph-based algorithm”. Although it enables more profitable routing, its com-
putational complexity remains too high for practical deployment.

Angeris and Chitra [3] analysed a specific class of constant function AMMs
from the perspective of convex optimization theory. Furthermore, Danos, Khal-
loufi, and Prat [4] framed optimal routing and arbitrage as global convex op-
timisation problems on arbitrary networks of AMMs. Later, Angeris et al.
[5] formulated optimal routing for trades across multiple AMMs, incorporating
multiple tokens as inputs within a single optimisation framework. More re-
cently, Diamandis et al. [6] presented an efficient algorithm for optimal routing
through constant function market makers using a dual decomposition approach.
In contrast, Loesch and Richardson [7] introduced a new framework for optimal
routing and arbitrage that moves away from the traditional convex optimiza-
tion paradigm. Instead of solving a high-dimensional optimization problem, it
reframes the problem as a much lower-dimensional root-finding problem.

In summary, all previous algorithms either fail to find optimal solutions or
suffer from prohibitive computational complexity. The most practical ones are
limited to finding only linear routing paths. While convex optimization has shown
the most promise for DEX routing, a naive application of existing algorithms can-
not effectively account for network fees and lacks scalability in realistic, practical
settings.
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Our Proprietary Routing Algorithm

To address these limitations, we have developed a new, proprietary routing
algorithm that offers significant advantages over existing solutions. The main
advantages of our algorithm are fivefold:

• AI-Powered Search Space Pruning: We use our own in-house devel-
oped AI model to prune the search space significantly. This allows us to
quickly identify the most promising routing options, dramatically reduc-
ing the computational overhead and enabling us to find the best routes
faster.

• Scalable Convex Optimization: We have built upon existing research
to ensure that a similar-in-spirit approach to convex optimization can be
applied to real-world scenarios with hundreds of thousands of DEXes. Our
algorithm is designed to be highly scalable, allowing us to efficiently find
the best routes even in the most complex and fragmented DeFi landscapes.

• Comprehensive Network Fee Handling: By combining these two
advances, our algorithm is able to handle network fees effectively. This
ensures that the routes we provide are not only optimal in theory but also
in practice, delivering the best possible execution price for our users.

• GPU Acceleration: Our algorithm is designed to be easily scaled on
GPUs. This architecture allows us to take full advantage of the massive
parallel processing capabilities and recent performance improvements in
GPU hardware, ensuring our routing calculations are performed at un-
paralleled speeds. GPUs are leveraged in two distinct ways within our
solution: for the training of our AI-powered search space pruning model,
and for the actual execution (inference) of the routing algorithm itself.
The training phase for our AI is not as computationally expensive as in
mainstream large language model (LLM) training and can be completed
efficiently on a single GPU. Furthermore, the inference phase for the rout-
ing algorithm is highly optimized, allowing a single modern GPU to serve
numerous users simultaneously, significantly enhancing overall efficiency
and scalability.

• Certificate of Optimality: In certain cases, when the AI-driven pruning
heuristic preserves favorable geometric properties of the solution space, our
algorithm can provide a formal certificate of optimality. This certificate
mathematically proves that the found solution satisfies the Karush-Kuhn-
Tucker (KKT) conditions for the complete problem, including all network
fees, guaranteeing that no better execution route exists.
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